DACyTAr - Datos Primarios en Acceso Abierto de la Ciencia y la Tecnología Argentina

Appendix and source code of ACP solver for the paper On the additive chromatic number of several families of graphs

Compartir en
redes sociales


Registro completo

Título
Appendix and source code of ACP solver for the paper On the additive chromatic number of several families of graphs
Autor(es)
Afiliación(es) del/de los autor(es)
Severín, Daniel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Rosario; Argentina
Resumen
This folder contains a source code for solving the ADDITIVE COLORING PROBLEM as well as testing the ADDITIVE COLORING CONJECTURE. In addition, it contains the appendix of the paper "On the additive chromatic number of several families of graphs" with proofs of some propositions, the integer programming model and some computational experiments.
Steps to reproduce The programs ACOPT, TEST and DSATUR should be compiled with Visual Studio 2013. The programs also require IBM ILOG CPLEX 12.6. Below, some examples are given. Testing the additive coloring conjecture on all graphs of 4 vertices: test.exe graphs4.all Recall that acopt.exe and dsatur.exe must be present in the same folder. Also, acopt must be compiled without "VERBOSE" definition (just comment that line in source code). Since "test" generates several files on-the-fly and makes heavy use of the hard disk, it is advisable to execute it on a RamDisk. Obtaining the additive chromatic number of a graph, e.g. the cycle sun with m = 10, and assuming an upper bound UB = 8: acopt.exe CS10.graph 8 If none upper bound is provided, it uses UB = Delta(G)^2-Delta(G)+1 by default (which is really bad!). A lower bound LB can also be provided together with UB. For example: acopt.exe KS10.graph 10 4 In particular, for obtaining an additive k-coloring for a specific k, use UB = LB = k. It is recommended to compile acopt with "VERBOSE" definition for viewing log and optimal solution.
Año de publicación
Idioma
inglés
Formato (Tipo MIME)
application/octet-stream
Clasificación temática de acuerdo a la FORD
Matemáticas
Materia
Additive chromatic number; Additive coloring conjecture; Lucky labeling; Graph algorithms; Integer Programming;
Condiciones de uso
Disponible en acceso abierto
Repositorio digital
RepHipUNR (UNR) - Universidad Nacional de Rosario
Identificador alternativo
https://doi.org/10.1016/j.ipl.2020.105937
Identificador alternativo
https://doi.org/10.17632/9zwm2nxvbs.1

Citación

Severín, Daniel Esteban (): Appendix and source code of ACP solver for the paper On the additive chromatic number of several families of graphs. Universidad Nacional de Rosario, http://hdl.handle.net/2133/18976.

Exportar cita