DACyTAr - Datos Primarios en Acceso Abierto de la Ciencia y la Tecnología Argentina
Deciphering Aquaporin-1 Permeability Modulation by Membrane Lipid Composition and Bilayer Mechanical Stress via Atomistic Simulations
Registro completo
- Título
- Deciphering Aquaporin-1 Permeability Modulation by Membrane Lipid Composition and Bilayer Mechanical Stress via Atomistic Simulations
- Autor(es)
- Gioia, Daiana Solange; Casal, Juan José; Toriano, Roxana Mabel
- Afiliación(es) del/de los autor(es)
-
Gioia, Daiana Solange. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentina
Casal, Juan José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentina
Toriano, Roxana Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentina
- Resumen
-
Aquaporin-1 (AQP1) is a critical water channel whose functionality is inherently tied to its surrounding lipid environment. Using atomistic molecular dynamics (MD) simulations totaling several microseconds, we investigated the coupled influence of membrane composition and bilayer mechanical tension on AQP1 water permeability. Specifically, systems featuring varying concentrations of anionic lipids (e.g., POPG, Cardiolipin) and differential lateral pressures were analyzed. Our results reveal a non-linear modulation of water flux, quantified via single-channel permeability coefficients and potential of mean force (PMF) profiles, across the channel's selectivity filter. High mechanical tension, regardless of the lipid type, consistently induced a statistically significant decrease in water conductance, attributed to a subtle yet critical tilting of the pore-lining helices and a local increase in the energy barrier within the NPS region. Conversely, specific anionic lipid compositions attenuated this effect, suggesting a compensatory, charge-mediated stabilization of the channel structure under stress. These findings underscore the necessity of considering the membrane's chemomechanical state when modeling AQP1 function and provide essential insights for rational drug design targeting the ADMET properties of water-soluble compounds.
- Año de publicación
- Idioma
-
inglés
- Formato (Tipo MIME)
-
application/zip
- Clasificación temática de acuerdo a la FORD
- Ciencias informáticas y de la información
- Condiciones de uso
- Disponible en acceso abierto bajo licencia Creative Commons https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Citación
Gioia, Daiana Solange Casal, Juan José Toriano, Roxana Mabel (): Deciphering Aquaporin-1 Permeability Modulation by Membrane Lipid Composition and Bilayer Mechanical Stress via Atomistic Simulations. Consejo Nacional de Investigaciones Científicas y Técnicas, http://hdl.handle.net/11336/278076.